√n − 2 | ||
gn = | ; dzielimy licznik i mianownik przez √n | |
3 n + 5 |
| |||||||||||
gn = | |||||||||||
|
1 − 0 | ||
lim gn = | = 0 | |
+∞ + 0 |
2 − 5n − 10 n2 | ||
hn = | dzielimy licznik i mianownik przez n | |
3n + 15 |
| |||||||||||
hn = | |||||||||||
|
0 − 5 − ∞ | ||
lim hn = | = −∞ | |
3 + 0 |
√n2+n+n | n2+n−n2 | |||
on = (√n2+n−n) | = | = | ||
√n2+n+n | √n2+n+n |
n | 1 | |||
= | = | |||
√n2+n+n | √1+1/n+1 |
1 | 1 | 1 | ||||
lim | = [ | ] = | ||||
√1+1/n+1 | √1+0+1 | 2 |
n+2−n | 2 | |||
mn= | = | |||
√n+2+√n | √n+2+√n |
2 | 2 | |||
lim | = [ | ] = 0 | ||
√n+2+√n | ∞ |
1 | √4n2+7n+2n | √4n+7/n+2 | ||||
ln= | = | = | ||||
√4n2+7n−2n | 4n2+7n−4n2 | 7 |
√4n+7/n+2 | √4+0+2 | 4 | ||||
lim | = [ | ] = | ||||
7 | 7 | 7 |
a3 − b3 | ||
Zastosuj wzór a − b = | ||
a2 − a*b + b2 |
a3−b3 | ||
a3−b3=(a−b)(a2+ab+b2) ⇔ a−b= | ||
a2+ab+b2 |
2n3−2n3−5n2+7 | ||
rn= | = | |
n23√4+3√4n6+10n5−14n3+3√(2n3+5n2−7)2 |
−5+7/n2 | ||
= | ||
3√4+3√4+10/n−14/n3+3√(2+5/n−7/n3)2 |
−5+7/n2 | ||
lim | = | |
3√4+3√4+10/n−14/n3+3√(2+5/n−7/n3)2 |
−5+0 | −5 | −53√2 | ||||
= [ | ] = | = | ||||
3√4+3√4+0+0+3√(2+0+0)2 | 33√4 | 6 |