matematykaszkolna.pl
Znajdź te liczby Pauczi99: Dla jakich wartości a,b liczba −1 jest dwukrotnym rozwiązaniem równania x4+bx3+2x2+ax=0
16 paź 10:57
ICSP: Użyj rozszerzonego schematu Hornera aby podzielić wielomian znajdujący się po prawej stronie równania przez x2 + 2x + 1.
16 paź 11:11
Pauczi99: Czyli że jak?
16 paź 11:50
Eta: (x+1)2(x2+Ax+B)= ....... = x4+(A+2)x3+(2A+C+1)x2+(2C+A)x+C=0 i x4 +bx3 +2x2 +ax=0 to: C=0 i A+2=b i 2A+C+1= 2 i 2C+A=a zatem A=0,5 i b= A+2 ⇒ b=2,5 i a= 0,5
16 paź 21:26
Antonni: Dobry wieczor Pani Eta emotka ja nie jstem autorem tego postu ale interesuje mnie to Autorem postu jest pewnie szybkapomoc ale zapomnail tutaj dodac +1 (ale to jest najmniej wazne dla mnie Ja chcialbym sie dopytac o to rozwiazanie gdyz to chyba poziom studia a ja jeszce nie jestem studentem ale chcialbym to zrozumiec Ten zapis (x−1)2 to rozumiem Nastepny (x2+Ax+B) czy to jest zapis reszty z dzielenia ktora powstanie z dzielenia tych wielomianow ?Bo skoro dzielimy przez wielomian stopnia drugiego to reszta tez moze byc max stopnia drugiego Tylkodlaczego taki zapis ? Wydawalo mi sie ze powinno byc Ax2+Bx+C) Potem w Pani zapisie pojawiasie tez C (tego nie rozumiem tez . Prosze wiec o wyjasnienie jesli bedzie Pani taka uprzejma emotka
16 paź 21:53
Tadeusz: skoro 1x4 ....to Twoje A=1 emotka
16 paź 22:12
Antonni: WItam emotka Jesli byloby np 2x4 to wtedy napisze Ax2+bx+C TUtaj mamy x4 to mozemy ten wspolczynnik A przenies do Ax. tak ?
16 paź 22:17
Tadeusz: dokładnie
16 paź 22:21
Tadeusz: dla 2x4 ... też nie szukałbyś bo wiesz, że to 2
16 paź 22:22
Antonni: dziekuje emotka
16 paź 22:24
Tadeusz: emotka
16 paź 22:26