matematykaszkolna.pl
Nierówność Adam:
x2 1 


4+9x4 12 
15 paź 16:46
PW: Można pomnożyć obie strony przez iloczyn mianowników (są dodatnie).
15 paź 16:48
Adam: Dzięki emotka
15 paź 16:49
Leszek: Poniewaz dla kazdej liczby R mianowniki sa >0 to po przemnozeniu 9x4−12x2+4≥0 podstaw t=x2 , t≥0 9t2−12t+4≥0 i rozwiaz
15 paź 16:51
Adam: Wyszło mi, że x∊R, zgadza się? emotka
15 paź 16:53
Adam:
 2y−4 
Jeśli mam przykład

>0 to mogę pomnożyć przez mianownik, bo jest on zawsze
 y2+1 
 x+1 
dodatni, tak? A jeśli mam przykład chociażby taki

−2<0
 2x−3 
 −3x+7 
to muszę doprowadzić to do postaci

<0 i wtedy pomnożyć przez mianownik 2?
 2x−3 
15 paź 17:05
Leszek: W pierwszy przypadku mnozymy przez mianownik ,a w drugim zamieniasz na postac iloczynowa (−3x+7)(2x−3)<0
15 paź 17:11
Adam: To jeszcze ostatnie pytanie żeby nie zakładać nowego tematu . Jeśli mam
 −2 3−4x 3 



to rozwiązuje na początek pierwszą część nierówności, następnie
 3 5x+2 2 
drugą a na sam koniec część wspólna?
15 paź 17:19