1 | 1 | ||
∫x6−3x4+3x2−1dx = | (x7/7−3x5/5+x3−x) | ||
3 | 3 |
1 | x | |||
∫ | (x2−1)3dx= | (x2−1)3−2∫x2(x2−1)2dx | ||
3 | 3 |
1 | x | x3 | ||||
∫ | (x2−1)3dx= | (x2−1)3−2( | (x2−1)2−{4}{3}∫x4(x2−1)dx) | |||
3 | 3 | 3 |
1 | x | 2 | 8 | |||||
∫ | (x2−1)3dx= | (x2−1)3− | x3(x2−1)2+ | ∫x4(x2−1)dx | ||||
3 | 3 | 3 | 3 |
1 | x | 2 | 8 | x5 | ||||||
∫ | (x2−1)3dx= | (x2−1)3− | x3(x2−1)2+ | ( | (x | |||||
3 | 3 | 3 | 3 | 5 |
2 | ||
2−1)− | ∫x6dx) | |
5 |
1 | 1 | 2 | 8 | 16 | ||||||
∫ | (x2−1)3dx= | x(x2−1)3− | x3(x2−1)2+ | x5(x2−1)− | x7+C | |||||
3 | 3 | 3 | 15 | 105 |