matematykaszkolna.pl
Zadanko Zosia: Niech u=tg(x/2) pokazać,że: 1) cosx=1−u2/1+u2 2)sin(x)=2u/1+u2
13 paź 23:33
Antonni: sinx= 2sinx/2*cosx/2 Prawa strona tego wzoru sie nie zmieni gdy zostanie podzielona przez1 Wiesz ze cos2x/2 +sin2x/2=1
 2sinx/2*cosx/2 
wiec sinx=

 cos2x/2+sin2x/2 
podziel w zeszycie licznik i mianownik prawej strony przez cos2x/2 i oytzymasz wzor na sinx Od razu mowie nie bede tu liczyl bo koszmare zapisy by byly Teaz cosx cosx= cos2x/2−sin2x/2 i cos2x/2 +sin2x/2=1
 cos2x/2−sin2x/2 
cosx=

 cos2x/2 +sin2x/2 
to samo licznik i mianownik podzielic przez cos2x/2 w zeszycie
13 paź 23:49
Antonni: Juz Zosi to nie interesuje .
14 paź 20:18
Saizou : można też od lewej story
 x x x 
 x x 
cos2

−sin2

 2 2 
 
L=cos(x)=cos(2·

)=cos2

−sin2

=

=
 2 2 2 1 
 x x 
cos2

−sin2

 2 2 
 

=
 x x 
cos2

+sin2

 2 2 
 
 x x 
cos2

(1−tg2

)
 2 2 
 1−u2 

=

 x x 
cos2

(1+tg2

)
 2 2 
 1+u2 
analogicznie będzie z sinusem
14 paź 20:30