matematykaszkolna.pl
a piter: doprowadź do najprostszej postaci: dla α∊(270,360)
cos sin 

+

1−sin2 1−cos2 
proszę o sam wynik emotka
11 paź 15:20
Adamm: zapomniałeś o α, nigdy o tym nie zapominaj
cosα sinα 

+

=
1−sin2α 1−cos2α 
 cosα sinα 
=

+

 |cosα| |sinα| 
cosα>0, sinα<0
 cosα sinα 
czyli

+

=1−1=0
 |cosα| |sinα| 
11 paź 15:22
piter: Masz rację emotka a czemu sinα w liczniku drugiego ułamka nie jest ze znakiem "−" skoro w IV ćwiartce sinus jest ujemny?
11 paź 15:32
Adamm: czemu miałby być to że −2 jest ujemne to znaczy że mamy pisać −−2 bez sensu
11 paź 15:33
piter:
cosα sinα cosα sinα cosα 

+

=

+

=

|cosα| |sinα| cosα −sinα cosα 
 sinα 

= 1−1=0
 sinα 
tak mogę rozwinąć Twoją ostatnią linijke?
11 paź 15:34
Adamm: tak
11 paź 15:35
piter: czyli to w której ćwiartce jakie funkcje mają poszczególne znaki ma znaczenie tylko przy opuszczaniu wartości bezwzględnej, tak?
11 paź 15:35
Adamm: tak
11 paź 15:38