sin3x | 3cos3xcos25x | |||
limx→π | =(z reguły hospitala) limx→π | = | ||
tg5x | 5 |
−3 | ||
= | ||
5 |
sin3xcos5x | sin(3π−3x)cos5x | |||
= lim | = lim | = | ||
sin5x | sin(5π−5x) |
sin(3π−3x)cos5x(5π−5x)(3π−3x) | ||
= lim | = | |
(5π−5x)(3π−3x)sin(5π−5x) |
sin(3π−3x) | 5π−5x | 3π/x−3 | ||||
= lim | * | *cos5x* | = | |||
3π−3x | sin(5π−5x) | 5π/x+5 |
−3 | 3 | |||
= 1*1*(−1)* | = | |||
5 | 5 |
−3 | −3 | |||
=1*1*(−1)* | = | |||
−5 | 5 |
3π−3x | ||
potem pomnożyłem razy | z drugim tak samo | |
3π−3x |
sin(3π−3x) | ||
limx→π | = 1 | |
3π−3x |
sinx | ||
ponieważ limx→0 | = 1, z drugim tak samo | |
x |