|
|
| ||||||||||||||||||||||
Wykaż, że jeśli k∊N, n∊N i k<n, to | + | = | ||||||||||||||||||||||
| n! | n! | |||
L= | + | = | ||
| k!*(n−k)! | (k+1)!*(n−k−1)! |
| n! | n! | |||
= | + | = | ||
| k!*(n−k−1)!*(n−k) | k!*(k+1)*(n−k−1)! |
| n! | 1 | 1 | ||||
= | *[ | + | ]= | |||
| k!*(n−k−1)! | n−k | k+1 |
| n! | k+1+n−k | |||
= | * | = | ||
| k!*(n−k−1)! | (n−k)*(k+1) |
| n! | n+1 | |||
= | * | = | ||
| k!*(n−k−1)! | (n−k)*(k+1) |
| n!*(n+1) | (n+1)! | |||
= | = | =P | ||
| k!*(k+1)*(n−k−1)!*(n−k) | (k+1)!*(n−k)! |