| 1 | ||
f(x)= | x3+x2−8x−8 , x należy <−5,3> | |
| 3 |
f '(x) = x2 + 2 x − 8 = ( x +4)*(x − 2) = 0 ⇔ x = − 4 lub x = 2
− 4 ∊ < − 5, 3 > i 2 ∊ < − 5, 3 >
f ''(x) = 2 x + 2
więc
f ''( − 4) = − 6 < 0 − w punkcie x = − 4 funkcja ma maksimum lokalne ymax = f(
− 4) = ...
oraz
f ''(2) = 6 > 0 − w punkcie x = 2 funkcja ma minimum lokalne ymin = f(2) = ...
f(− 5) = U{1}{3]*(−125) + 25 + 40 − 8 = ...
| 1 | ||
f(3) = | *33 + 9 − 24 − 8 = ... | |
| 3 |