Dla jakich wartosci parametru b punkt przeciecia prostych danych rownaniami
{2x−3by=5b
{x+2y=5
nalezy do 4 cwiartki ukladu wspolrzednych
x= 5−2y
2(5−2y)−3by=5b
10−4y−3by=5b
−4y−3by= 5b−10
4y+3by= 10−5b
y(4+3b)= 10−5b
| 10−5b | ||
y= | ||
| 4+3b |
| 10−5b | |
<0 dla 4+3b≠0 | |
| 4+3b |
| 4 | ||
4+3b=0 to 3b=−4 to b= − | ||
| 3 |
| 4 | ||
b∊(−∞− | )U(2,∞) | |
| 3 |
| 10−5b | ||
x= 5−2* | ||
| 4+3b |
| 20+10b | ||
x= 5− | ||
| 4+3b |
| 5(4+3b)−20+10b | ||
x= | ||
| 4+3b |
| 25b | ||
x= | ||
| 4+3b |
| 25b | |
>0 dla 4+3b≠0 | |
| 4+3b |
| 4 | ||
b=0 lub b=− | ||
| 3 |
| 4 | ||
b∊(−∞, U{− | )U(0,∞) | |
| 3 |
| 4 | ||
Rozwiazanie to b∊(−∞− | )U{2,∞) | |
| 3 |