3√1−3x+2 | ||
a) lim (x→3) | //odp = −0.25 | |
x−3 |
√x+6−3 | 2 | |||
b) lim (x→3) | //odp = | |||
√x+1−2 | 3 |
3√3x−1 − 2 | (3x−1) −8 | ||
= | |||
x−3 | (x−1)[ (3x−1)2/3 + 2 (3x−1)1/3 + 4] |
3 | 3 | 1 | ||||
= | → | = | ||||
(3x−1)2/3 + 2 (3x−1)1/3 + 4 | 3*4 | 4 |
√x+6−3 | √x+1+2 | √x+6+3 | |||
· | · | = | |||
√x+1−2 | √x+1+2 | √x+6+3 |
(x−3)(√x+1+2) | |
= | |
(x−3)(√x+6+3) |
√x+1+2 | 4 | 2 | |||
= | = | przy x→3 | |||
√x+6+3 | 6 | 3 |