log2(y) | log2y | |||
log√2y= | = | =2log2y=log2y2 | ||
log2(√2) | 12 |
log42 | ||
log4x+ | =1 | |
log4y |
1 | ||
log4(x)+ | =1⇔ | |
2log4y |
1 | ||
log4(x)+ | =1 | |
log4y2 |
1 | ||
log4(x)+ | =1 /*4log4x | |
log4x4 |
4 | 1 | |||
t= | = | |||
8 | 2 |
1 | ||
log4x= | ||
2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |