oblicz granice
Anka: limx→5 = 125−x34x2−100
24 wrz 22:49
Antonni: wiec
125−x
3= 5
3−x
3 i wzor a
3−b
3
4x
2−100dziele przez 4 i wtedy x
2−25= (x+5)(x−5)
24 wrz 22:54
Antonni: | | (5−x)(25+5x+x2) | |
= limx→5 |
| = |
| | (x+5)(x−5) | |
| | (−1)(x−5)(25+5x+x2 | |
= limx→5 |
| = |
| | x+5)(x−5) | |
| | −(25+5x+x2) | |
limx→5 |
| = −7,5 |
| | x+5 | |
25 wrz 00:17