Rozwiąż układ metodą Kroneckera-Capellego
dari: Rozwiąż układ metodą Kroneckera−Capellego
x−y+2z+t=3
−2x+3y+4z−2t=−5
3x−4y−2z+2t=9
Narazie wyszlo mi ze ma rozwiązania a rząd = 3
24 wrz 12:13
Saizou :
potraktuj jedną ze zmiennych jako parametr
24 wrz 12:44
dari: Jak policzyć wyznaczniki mając za zmienną parametr?
24 wrz 12:57
24 wrz 13:54
dari: Prosze o sprawdzenie
24 wrz 13:55
maciu: dobrze
24 wrz 13:55
Jerzy: Źle
24 wrz 13:56
dari: więc jak?
24 wrz 14:45
Jerzy: Co jak
24 wrz 14:52
Jerzy: Zacznij od założeń.
24 wrz 15:02
24 wrz 15:19
Jerzy: Sprawdź założenia macierzy
24 wrz 15:29
dari: Rząd jest mniejszy od liczby niewiadomych więc jest nieskończenie wiele rozwiązań?
24 wrz 15:31
dari: Proszę o wyjaśnienie
24 wrz 15:32
Jerzy: W dobrym kierunki idziesz
24 wrz 15:36
Jerzy: *u
24 wrz 15:36
dari: Nie możesz powiedzieć o co chodzi?

Układ ma rozwiązania bo rzędy są sobie równe.
24 wrz 15:41
Jerzy: Mogę,ale sama musisz zauwazyć.Wtedy zrozumiesz.
24 wrz 15:43
dari: Nie wiem.. W rozwiązaniu brakuje, że alfa należy do liczb rzeczywistych?
24 wrz 15:47
dari: Czy całe rozwiązanie jest złe?
24 wrz 15:47
Jerzy: Całe nie,tragedii nie ma
24 wrz 15:53
dari: Więc nie wiem o co chodzi
24 wrz 15:55
Jerzy: To niestety. Moge dac ci rozwiązanie,ale nie na tym to polega.
24 wrz 16:05
dari: A dlaczego nie możesz powiedzieć co jest źle? Prześledziłam wszystko i naprawdę nie wiem
24 wrz 16:06
Jerzy: Nie ma róży bez kolców
Mówi ci to coś?
24 wrz 16:11
Mariusz:
Korzystając z twierdzenia Kroneckera−Capellego możemy stwierdzić
czy układ ma rozwiązanie
Od rozwiązywania układów równań jest eliminacja Gaussa
a po sprowadzeniu układu do postaci Cramera
także metoda wyznacznikowa Cramera,
metody macierzowe (mnożenie przez macierz odwrotną, rozkład macierzy)
24 wrz 16:27
Mariusz:
Do wybranego wiersza możesz dodać inny wiersz pomnożony przez stałą
Wybrany wiersz możesz pomnożyć przez stałą różną od zera
Możesz zamienić dwa dowolnie wybrane wiersze
24 wrz 16:30
Jerzy: Mariusz przejmujesz pałeczke
Ja jestem bezradny,moze ty cos wskurasz:(
24 wrz 17:00