π | π | π | ||||
cos(2α+7/4π)=cos(2α+(2π− | ))=cos2αcos(2π− | )−sin2αsin(2π− | )= | |||
4 | 4 | 4 |
π | π | √2 | √2 | √2 | ||||||
cos2αcos | +sin2αsin | = | cos2α+ | sin2α= | (cos2α+sin2α)= | |||||
4 | 4 | 2 | 2 | 2 |
√2 | |
((cosα)2−(sinα)2+2sinαcosα) | |
2 |
cosα | 2 | 2 | ||||
Z tego że ctgα=2/3 mamy, że | = | , czyli cosα= | sinα | |||
sinα | 3 | 3 |
√2 | 4(sinα)2 | 2 | √2 | ||||
( | −(sinα)2+2sinα | sinα)= | |||||
2 | 9 | 3 | 2 |
4(sinα)2 | 9(sinα)2 | 12(sinα)2 | √2 | 7(sinα)2 | ||||||
( | − | + | )= | (*) | ||||||
9 | 9 | 9 | 2 | 9 |
2 | ||
Musimy jeszcze obliczyć ile to jest sinα, a to dostaniemy z tego, że cosα= | sinα oraz | |
3 |
9 | 3 | |||
Z tego układu równań mamy: sin2α= | . Ponieważ α∊(π, | π), to sinα<0, zatem | ||
13 | 2 |
3 | ||
sinα=− | ||
√13 |
2 | ||
ctgα= | i α∊ III ćw. to cosα<0 i sinα<0 | |
3 |
x | ||
ctgα= | ⇒ x= −2k i y= −3k to r= √4k2+9k2= √13k | |
y |
y | 3 | x | 2 | |||||
zatem sinα= | = − | i cosα= − | = − | |||||
r | √13 | r | √13 |
4 | 9 | |||
to cos2α= | i sin2α= | |||
13 | 13 |
√2 | ||
cos(2α+2π−(π/4))= cos(2α−(π/4))= cos2α*cos(π/4)+sin2α*sin(π/4) = | (cos2α+sin2α)= | |
2 |
√2 | ||
= | (cos2α−sin2α+2sinα*cosα)=............... | |
2 |
cosα | 2 | |||
1) ctgα= | = | ⇔ | ||
sinα | 3 |
2 | ||
cosα= | *sinα | |
3 |
4 | ||
sin2α+ | sin2α=1 | |
9 |
13 | |
*sin2α=1 | |
9 |
9 | ||
sin2α= | ||
13 |
3 | ||
sinα=− | ||
√13 |
2 | 3 | −2 | ||||
cosα= | *(− | )= | ||||
3 | √13 | √13 |
4 | ||
cos2α= | ||
13 |
4 | 9 | 5 | ||||
2) cos(2α)=cos2α−sin2α= | − | =− | ||||
13 | 13 | 13 |
π | π | √2 | ||||
3)cos(2α+2π− | )=cos(2α− | )= | *(cos2α+sin2α)= | |||
4 | 4 | 2 |
√2 | 5 | −3 | −2 | |||||
= | *(− | +2* | * | ) | ||||
2 | 13 | √13 | √13 |