Mariusz:
Równanie liniowe niejednorodne pierwszego rzędu
y'+ytgx=0
y'=−ytgx
ln|y|=ln|cos(x)|+ln|C|
y=Ccos(x)
y(x)=C(x)cos(x)
C'(x)cos(x)−C(x)sin(x)+C(x)sin(x)=cos
3(x)
C'(x)=cos
2(x)
∫cos
2(x)dx=sin(x)cos(x)+∫sin
2(x)dx
∫cos
2(x)dx=sin(x)cos(x)+∫(1−cos
2(x))dx
∫cos
2(x)dx=sin(x)cos(x)+∫dx−∫cos
2(x)dx
2∫cos
2(x)dx=sin(x)cos(x)+∫dx
| 1 | |
∫cos2(x)dx= |
| (sin(x)cos(x)+x)+C |
| 2 | |
| 1 | |
C(x)= |
| (sin(x)cos(x)+x)+C1 |
| 2 | |
| 1 | | 1 | |
y= |
| sin(x)cos2(x)+ |
| xcos(x)+C1cos(x) |
| 2 | | 2 | |