| 1−2+3−4+...+(2n−1)−2n | ||
an= | ||
| n+4 |
| 1−2+3−4+...+(2n−1)−2n | ||
lim | ||
| n+4 |
| (1+3+2n−1)−(2+4+2n) | ||
lim | ||
| n+4 |
| ||||||||||||||
lim | ||||||||||||||
| n+4 |
| n2−(n2+n) | ||
lim | ||
| n+4 |
| n | ||
lim | ||
| n+4 |
| 1 | 1 | |||
i tu mi wychodzi albo | jakby n−ki ze sobą skrócił albo | jakbym n przed nawias | ||
| 4 | 0 |
| −n | ||
lim | = −1 | |
| n+4 |
| n2 − ( n2 + n) | − n | −1 | |||
= | = | ||||
| n +4 | n +4 | 1 + 4n |
| − 1 | ||
lim an = | = − 1 | |
| 1 + 0 |