1−2+3−4+...+(2n−1)−2n | ||
an= | ||
n+4 |
1−2+3−4+...+(2n−1)−2n | ||
lim | ||
n+4 |
(1+3+2n−1)−(2+4+2n) | ||
lim | ||
n+4 |
| ||||||||||||||
lim | ||||||||||||||
n+4 |
n2−(n2+n) | ||
lim | ||
n+4 |
n | ||
lim | ||
n+4 |
1 | 1 | |||
i tu mi wychodzi albo | jakby n−ki ze sobą skrócił albo | jakbym n przed nawias | ||
4 | 0 |
−n | ||
lim | = −1 | |
n+4 |
n2 − ( n2 + n) | − n | −1 | |||
= | = | ||||
n +4 | n +4 | 1 + 4n |
− 1 | ||
lim an = | = − 1 | |
1 + 0 |