2x2 − x | ||
jak rozumiem |x| to podstawa logarytmu, a liczba logarytmowana to | . | |
2 |
2x2 − x | |
> 0 −>>> 2x2−x > 0 | |
2 |
1 | ||
x(2x−1) > 0 −>> x ∊ (− ∞ ; 0) U ( | ; ∞) | |
2 |
1 | ||
x ∊ (− ∞ ; −1) U (−1;0) U ( | ; 1) U (1;∞) | |
2 |
2x2−x | ||
log|x| | > 1 | |
2 |
2x2−x | ||
log|x| | > log|x||x| | |
2 |
2x2−x | |
< |x| | |
2 |
2x2−x | ||
log|x| | > 1 | |
2 |
2x2−x | ||
log|x| | > log|x||x| | |
2 |
2x2−x | |
> |x| | |
2 |
2x2−x | |
< |x| | |
2 |
2x2−x | 2x2−x | |||
x < − | /\ x > | |||
2 | 2 |
1 | 3 | |||
x ∊ (− | ; 0) /\ x ∊ (0 ; | ) | ||
2 | 2 |
1 | 3 | |||
zatem x ∊ (− | ; 0) U (0 ; | ) | ||
2 | 2 |
1 | 1 | 3 | ||||
trzeba uwzglednic dziedzine ... wiec mamy x ∊ (− | ; 0) U ( | ;1) U(1; | ) | |||
2 | 2 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |