2x | ||
u = ln(x2+1) u' = | ||
x2 + 1 |
x2 | ||
= ∫ x ' ln (x2+1) dx = x ln (x2 + 1) − 2 ∫ | dx = | |
1+x2 |
(1+x2) − 1 | ||
= x ln (x2 + 1) − 2 ∫ | dx = | |
1+x2 |
2x | ||
u=x v'= | ||
x2+1 |
2x | ||
∫ln(x2+1)dx=xln(x2+1)−∫ | dx= | |
x2+1 |
2(x2+1)−2 | dx | |||
=xln(x2+1)−∫ | dx=xln(x2+1)−∫2dx+2∫ | |||
x2+1 | x2+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |