1 | |
. | |
x2 (x+√1+x2) |
x+√1+x2 | √1+x2 | |||
Odpowiedź: ln| | | − | + C . | ||
x | x |
t2−1 | ||
x= | ||
2t |
2t*2t−2(t2−1) | ||
dx= | dt | |
4t2 |
t2+1 | ||
dx= | dt | |
2t2 |
4t2 | 1 | t2+1 | ||
∫ | dt | |||
(t2−1)2 | t | 2t2 |
2 | ||
∫ | dt= | |
t(t2−1)2 |
2t3 | 4t | 2 | ||||
∫ | −∫ | dt+∫ | dt | |||
(t2−1)2 | t2−1 | t |
t2+1 | ||
2∫ | dt | |
t(t2−1)2 |
2t | 2 | |||
=∫ | dt+ | dt | ||
(t2−1)2 | t(t2−1)2 |
2t | 2t3 | 4t | 2 | |||||
=∫ | dt+∫ | dt−∫ | +∫ | dt | ||||
(t2−1)2 | (t2−1)2 | t2−1 | t |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |