| 1 | ||
∫ | dx | |
| (x−3)(x−4)(x+1) |
. Wyszło mi:
| 1 | 1 | 1 | ||||
ln|x−3| − | ln|x−4| + | ln|x+4| + C | ||||
| 14 | 7 | 14 |
| 1 | 1 | 1 | |||
ln|x−4| − | ln|x−3| + | ln|x+4| + C | |||
| 5 | 4 | 20 |
| 1 | A | B | C | ||||
dx = | + | + | /*(x−3)(x−4)(x+1) | ||||
| (x−3)(x−4)(x+1) | x−3 | x−4 | x+1 |
| 1 | 1 | 1 | ||||
Z tego układu wychodzi mi, że A = | B = − | C = | ||||
| 14 | 7 | 14 |
| 1 | 1 | 1 | ||||
czyli: | ln|x−3| − | ln|x−4| + | ln|x+4| + C | |||
| 14 | 7 | 14 |
| 1 | |
ln|x+1| + C | |
| 14 |
| 1 | 1 | 1 | |||
ln|x−3| − | ln|x−4| + | |x+1|+C | |||
| 14 | 7 | 14 |
| 1 | 1 | 1 | 1 | ||||
= ( | − | ) | = | ||||
| (x−4)(x−3)(x+1) | x−4 | x−3 | x+1 |
| 1 | 1 | 1 | 1 | 1 | 1 | ||||||
( | − | ) − | ( | − | ) | ||||||
| 5 | x−4 | x+1 | 4 | x−3 | x+1 |
| 1 | 1 | 1 | 1 | 1 | 1 | ||||||
= | − | + | |||||||||
| 5 | x−4 | 4 | x−3 | 20 | x+1 |