| 1 | ||
Promień okręgu wpisanego: r = | h | |
| 3 |
| 2 | ||
Promień okręgu opisanego: R = | h | |
| 3 |
| a√3 | ||
zad5/ a=12 to h= | ⇒ h= 6√3 | |
| 2 |
| c | ||
ze wzorów : R= | = | |
| 2 |
| a+b−c | ||
r= | =..... | |
| 2 |
| a+b | ||
P= | *h=...... | |
| 2 |
zad 9/ b= a−3 , a∊(0,3)
Obwód : 2a +2b = 40 to a+b= 20 ⇒ a+a−3=20 2a= 23 ⇒ a= 11,5
to b= a−3 ⇒ b= 8,5
zad10 /
A( −1,2) , B(3,4)
|AB|= √(xB−xA)2+(yB−yA)2= ......
| xA+xB | yA+yB | |||
S( | , | )= S(......, .......) | ||
| 2 | 2 |
zad, 11/
a) A( x,y) → SOx → A'(x, −y)
to A'( −4,−2)
b) A(x,y) → Sx=a → A'( 2a−x,y)
to A'(10,2)
c) A(x,y) → S(0,0) → A'(−x,−y)
to A'( 4,−2)
d) A(x,y) → SB(a,b) → A'( 2a−x, 2b −y)
to: A'( −6+4, −2−2) = (−2, −4)