1 | ||
∫x3 arcsin | ||
x |
1 | ||
v' = x3 v= | x4 | |
4 |
1 | ||
u = arcsin(1/x) u' = − | ||
x2*√1−(1/x2) |
1 | ||
v=arcsin | x g'=x3 | |
x |
1 | x4 | |||
v'=− | } g= | |||
x2√(1−1/x)2) | 4 |
1 | 1 | 1 | x2 | ||||
x4*arcsin | + | ∫ | |||||
4 | x | 4 | √(1−1/x)2) |
x3 | ||
ostatnia całka: ... = ∫ | dx ... i podstawienie: x2 = t 2xdx = dt ... | |
√x2−1 |
tdt | ||
= ∫ | ||
√t −1 |
1 | ||
przed całką oczywiście | ||
2 |
1 | ||
∫x3arcsin | dx | |
x |
1 | ||
t= | ||
x |
1 | ||
dt=− | dx | |
x2 |
dt | ||
dx=− | ||
t2 |
1 | 1 | 1 | 1 | |||||
−∫ | arcsin(t)dt= | arcsin(t)− | ∫ | dt | ||||
t5 | 4t4 | 4 | t4√1−t2 |
1 | ||
∫ | dt | |
t4√1−t2 |
u2−1 | u2+1−2 | 2 | ||||
t= | = | =1− | ||||
u2+1 | u2+1 | u2+1 |
2u | ||
(1−t)u= | ||
u2+1 |
2u | ||
dt=−2(−1) | du | |
(u2+1)2 |
4u | ||
dt= | du | |
(u2+1)2 |
(u2+1)4 | u2+1 | 4u | ||
∫ | du | |||
(u2−1)4 | 2u | (u2+1)2 |
(u2+1)3 | ||
2∫ | du= | |
(u2−1)4 |
2u6+6u4+6u2+2 | 2u6+6u4+8u2−2u2+2 | |||
∫ | du=∫ | du | ||
(u2−1)4 | (u2−1)4 |
2u(u5+3u3+4u) | 2 | |||
∫ | du−∫ | du | ||
(u2−1)4 | (u2−1)3 |
1 | u5+3u3+4u | 1 | 5u4+9u2−2 | ||||
− | + | ∫ | du | ||||
3 | (u2−1)3 | 3 | (u2−1)3 |
1 | u5+3u3+4u | 1 | 5u4+7u2+2u2−2 | ||||
− | + | ∫ | du | ||||
3 | (u2−1)3 | 3 | (u2−1)3 |
1 | u5+3u3+4u | 1 | u(5u3+7u) | 2 | du | ||||||
− | + | ∫ | du+ | ∫ | |||||||
3 | (u2−1)3 | 3 | (u2−1)3 | 3 | (u2−1)2 |
1 | u5+3u3+4u | ||
− | − | ||
3 | (u2−1)3 |
1 | 5u3+7u | 1 | 5u2+5 | |||
+ | ∫ | du | ||||
12 | (u2−1)2 | 4 | (u2−1)2 |
1 | u5+3u3+4u | ||
− | − | ||
3 | (u2−1)3 |
1 | 5u3+7u | 1 | 10u2 | 5 | du | |||||
+ | ∫ | − | ∫ | |||||||
12 | (u2−1)2 | 4 | (u2−1)2 | 4 | (u2−1) |
1 | u5+3u3+4u | ||
− | − | ||
3 | (u2−1)3 |
1 | 5u3+7u | 1 | 5u | 5 | du | 5 | du | ||||||
− | + | ∫ | − | ∫ | |||||||||
12 | (u2−1)2 | 4 | u2−1 | 4 | u2−1 | 4 | (u2−1) |
1 | u5+3u3+4u | 1 | 5u3+7u | 1 | 5u | ||||
=− | − | − | +C | ||||||
3 | (u2−1)3 | 12 | (u2−1)2 | 4 | u2−1 |
x2 | ||
= (1/4) x4 asin (1/x) + (1/4) ∫ | dx | |
√1−1/x2 |
x3 | ||
= (1/4) x4 asin (1/x) + (1/4) ∫ | dx | |
√x2−1 |
x3 | [ (x2−1)+1 ] (x2−1)' | |||
∫ | dx = (1/2) ∫ | dx | ||
√x2−1 | √x2−1 |
p+1 | 1 | 1 | ||||
= (1/2) ∫ | dp = | p3/2 + p1/2 = | (x2 + 2) √x2−1 | |||
√p | 3 | 3 |