| x2 | ||
∫ | dx | |
| √(x−3)(5−x) |
| x−1 | x−1 | |||
t = arc sin | , sin t = | , cos t = ... (jedynka trygonometryczna) | ||
| 4 | 4 |
K: podstaw więc x = 4 + sin t, rachunki podobne
| 5+3t2 | 2 | |||
x= | =3+ | |||
| 1+t2 | 1+t2 |
| 2t | ||
(x−3)t= | ||
| 1+t2 |
| −4t | ||
dx= | dt | |
| (1+t2)2 |
| (5+3t2)2 | 1+t2 | −4t | ||
∫ | dt | |||
| (1+t2)2 | 2t | (1+t2)2 |
| (5+3t2)2 | ||
−2∫ | dt | |
| (1+t2)3 |
| −50−60t2−18t4 | ||
=∫ | dt | |
| (1+t2)3 |
| −50−60t2−18t4 | ||
∫ | dt=U{a3t3+a2t2+a1t+a0}{(1+t2)2 | |
| (1+t2)3 |
| b1t+b0 | ||
}+∫ | dt | |
| 1+t2 |
| −50−60t2−18t4 | |
= | |
| (1+t2)3 |
| (3a3t2+2a2t+a1)(1+t2)2−(a3t3+a2t2+a1t+a0)(1+t2)4t | |
| (1+t2)4 |
| b1t+b0 | ||
+ | ||
| 1+t2 |
| −50−60t2−18t4 | |
= | |
| (1+t2)3 |
| (3a3t2+2a2t+a1)(1+t2)−(a3t3+a2t2+a1t+a0)4t | |
| (1+t2)3 |
| (b1t+b0)(1+t2)2 | ||
+ | ||
| (1+t2)3 |
| −50−60t2−18t4 | −15t3−17t | dt | ||||
∫ | dt= | −33∫ | ||||
| (1+t2)3 | (1+t2)2 | 1+t2 |
| −50−60t2−18t4 | −15t3−17t | |||
∫ | dt= | −33arctan(t)+C | ||
| (1+t2)3 | (1+t2)2 |
| −50−60t2−18t4 | t | 2 | ||||
∫ | dt=− | (15+ | )−33arctan(t)+C | |||
| (1+t2)3 | 1+t2 | 1+t2 |
| −50−60t2−18t4 | 1 | 2t | 1 | 2t | ||||
∫ | dt=− | (15+ | )−33arctan(t)+C | |||||
| (1+t2)3 | 2 | 1+t2 | t | 1+t2 |
| x2 | 1 | (x−3) | ||||
∫ | dx=− | √(x−3)(5−x)(15+ | √(x−3)(5−x)) | |||
| √(x−3)(5−x) | 2 | √(x−3)(5−x) |
| √(x−3)(5−x) | ||
−33arctan( | )+C | |
| x−3 |
| x2 | 1 | √(x−3)(5−x) | ||||
∫ | dx=− | √(x−3)(5−x)(15+(x−3))−33arctan( | )+C | |||
| √(x−3)(5−x) | 2 | x−3 |
| x2 | 1 | √(x−3)(5−x) | ||||
∫ | dx=− | (x+12)√(x−3)(5−x)−33arctan( | )+C | |||
| √(x−3)(5−x) | 2 | x−3 |
| x2 | ((x−4)+4)2 | |||
∫ | dx=∫ | dx | ||
| √(x−3)(5−x) | √(x−3)(5−x) |
| (x−4)2 | 8(x−4) | 16 | ||||
∫ | dx+∫ | dx+ | dx | |||
| √(x−3)(5−x) | √(x−3)(5−x) | √(x−3)(5−x) |
| (x−4)2 | ||
∫ | dx=−(x−4)√(x−3)(5−x)+∫√(x−3)(5−x)dx | |
| √(x−3)(5−x) |
| (x−4)2 | 1−(x−4)2 | |||
∫ | dx=−(x−4)√(x−3)(5−x)+∫ | dx | ||
| √(x−3)(5−x) | √1−(x−4)2 |
| (x−4)2 | 1 | |||
2∫ | dx=−(x−4)√(x−3)(5−x)+∫ | dx | ||
| √(x−3)(5−x) | √1−(x−4)2 |
| (x−4)2 | 1 | 1 | 1 | |||||
∫ | dx=− | (x−4)√(x−3)(5−x)+ | ∫ | dx | ||||
| √(x−3)(5−x) | 2 | 2 | √1−(x−4)2 |
| 8(x−4) | ||
∫ | dx=−8√(x−3)(5−x)+C | |
| √(x−3)(5−x) |
| 1 | 33 | |||
=− | (x−4)√(x−3)(5−x)−8√(x−3)(5−x)+ | arcsin(x−4)+C | ||
| 2 | 2 |
| 1 | 33 | |||
=− | (x+12)√(x−3)(5−x)+ | arcsin(x−4)+C | ||
| 2 | 2 |