matematykaszkolna.pl
Muszę użyć tych wzorów Shadow: Zapisz w postaci iloczynu za pomocą wzoru różnicy n−tych potęg liczb (dla wszystkich n naturalnych). Wzory: an−bn=(a−b)(an−1+an−2b+an−3b2+...+abn−2+bn−1) an−bn=(a+b)(an−1−an−2b+an−3b2−...+(−1)n−2abn−2+(−1)n−1bn−1) Zadania: a) (4n+1)4−(41)4 b) (1−x2)3+(1+x2)3 c) (x+2y)3−(x−2y)3 d) (2a+2b)3+(2a−2b)3
27 lip 13:32
6latek: drugi wzor jest na an+bn i i n jest nieparzyste natomiast 1 wzor dla dowolnego n
27 lip 13:37
Mila: a) (4n+1)4−(4−1)4= taki zapis? b) (1−x2)3+(1+x2)3=(1−x2+1+x2)*[(1−x2)2−(1−x2)*(1+x2)+(1+x2)2]= =1*(1−2x2+x4−(1−x4)+1+2x2+x4)= =1+x4−1+x4+1+x4=1+3x4
27 lip 17:17
Shadow: Zapisz w postaci iloczynu za pomocą wzoru różnicy n−tych potęg liczb (dla wszystkich n naturalnych). Wzory: an−bn=(a−b)(an−1+an−2b+an−3b2+...+abn−2+bn−1) {n∊N ∧ a,b∊R} an+bn=(a+b)(an−1−an−2b+an−3b2−...+(−1)n−2abn−2+(−1)n−1bn−1) Dla dowolnego nieparzystego n i a,b∊R Zadania: a) (4n+1)4−(4n−1)4 b) (1−x2)3+(1+x2)3 c) (x+2y)3−(x−2y)3 d) (2a+2b)3+(2a−2b)3 To poprawny zapis
28 lip 23:27
6latek: To jaki problem podstawic do wzoru ? (4n+1)4−(4n−1)4 a=4n+1 b=4n−1 postawiaj do wzoru na an−bn Tak samo pozostale
28 lip 23:49
Shadow: Podstawić to każdy umie ale tu chodzi też o inne działania np. z potęgami "n,a,b". Przez samo podstawienie wyjdzie tylko bałagan a nie schludny zapis w postaci iloczynu bez dalszych możliwości przekształceń.
28 lip 23:58
Mila: a) (4n+1)4−(4n−1)4= =[(4n+1)2−(4n−1)2]*[(4n+1)2+(4n−1)2]= =[42n+2*4n+1−42n+2*4n−1]*[42n+2*4n+1+42n−2*4n+1]= =4*4n*[2*42n+2]=8*4n*(42n+1)
29 lip 00:11
6latek: Jesli chcesz slichdny zapis to czekaj Dlaczrgo mowisz ze nie ma mozliwosci przeksztalcen (2a+2b)2= (2a)2+2**2a*2b+(2b)2= 22a+2a+b+1+22b
29 lip 12:11
Shadow: Ale wyraźnie jest wskazane, że ma to być w postaci iloczynu czyli mnożenie a nie dodawanie. A użycie tego wzoru pozwala zobaczyć jak on działa na takich przykładach i jak rozwiązać inne nie szukając odrębnych wzorów do każdego przykładu.
29 lip 20:02
6latek: mam pytanie czy umiesz czytac ze zrozumieniem ? Jakie masz polecenie ? czy te dwa wzory ktore sa napisane na poczatku to tak tylko dla picu sa napisane ? Wiec zastosuj sie do polecenia .
29 lip 20:10
6latek: Przeciez widzisz ze b) c) id) to nic innego jak wzory skroconego mnozenia a3+b3=.... i a3−b3= .... Sprawdz to po tych wzorach co podane masz na poczatku .
29 lip 20:15
6latek: x+2y)3−(x−2y)3 ze wzoru an−bn = ............................................. (x+2y−(x−2y)*[(x+2y)2+(x+2y)(x−2y)+(x−2y)2] = 4y*(x2+4xy+4y2+x2−4y2+x2−4xy+4y2)= =4y*(3x2+4y2) sprawedz jezcze raz obliczenia bo liczylem na zywo Masz mnozenie ?
29 lip 20:36