√2 | √2 | |||
sinα= | ⋁ sinα=− | |||
2 | 2 |
3π | 7π | |||
α= | +2kπ α= | +2kπ | ||
4 | 4 |
3π | 7π | |||
ln(x2+y2)= | +2kπ ln(x2+y2)= | +2kπ | ||
4 | 4 |
3π | 7π | |||
x2+y2=e( | +2kπ) x2+y2=e( | +2kπ) | ||
4 | 4 |
sin(ln(x2+y2)) | |
=−1 | |
−cos(ln(x2+y2)) |
π | ||
ln(x2+y2)=− | +kπ k∊C | |
4 |
π | ||
x2+y2=e(− | +kπ) | |
4 |
π | ||
sinx + cosx = 0 ⇔ x = − | + kπ | |
4 |
ekπ | ||
czyli: x2 + y2 = e−π/4 + kπ = | ||
eπ/4 |
ekπ | ||
czyli rozwiązaniem są punkty okręgów o promieniach: r2 = | k = 0, 1, 2, ... | |
eπ/4 |