calka trygonometryczna
mario: Oblicz całkę:
∫sin2xcos4xdx
26 cze 13:23
jc:
| cos 6x | | cos 4x | | cos 2x | | 1 | |
sin2 x cos4 x = − |
| − |
| + |
| + |
| |
| 32 | | 16 | | 32 | | 16 | |
Dalej łatwo
26 cze 13:37
mario: a skąd to się wszystko wzięło ? z jakich zależnosci?
26 cze 13:45
jc: Z definicji funkcj trygonometrycznych:
gdzie z = e
ix
26 cze 14:02
Mariusz: ∫sin
2(x)cos
4(x)dx
∫(1−cos
2(x))cos
4(x)dx
∫cos
4(x)dx−∫cos
6(x)dx
∫cos
6(x)dx=∫cos(x)cos
5(x)dx
∫cos
6(x)dx=sin(x)cos
5(x)−5∫sin(x)cos
4(x)(−sin(x))dx
∫cos
6(x)dx=sin(x)cos
5(x)+5∫cos
4(x)sin
2(x)dx
∫cos
6(x)dx=sin(x)cos
5(x)+5∫cos
4(x)(1−cos
2(x))dx
∫cos
6(x)dx=sin(x)cos
5(x)+5∫cos
4(x)dx−5∫cos
6(x)dx
6∫cos
6(x)dx=sin(x)cos
5(x)+5∫cos
4(x)dx
| 1 | | 5 | |
∫cos6(x)dx= |
| sin(x)cos5(x)+ |
| ∫cos4(x)dx |
| 6 | | 6 | |
| 1 | | 5 | |
∫cos4(x)dx−∫cos6(x)dx=∫cos4(x)dx− |
| sin(x)cos5(x)− |
| ∫cos4(x)dx |
| 6 | | 6 | |
| 1 | | 1 | |
∫cos4(x)dx−∫cos6(x)dx=− |
| sin(x)cos5(x)+ |
| ∫cos4(x)dx |
| 6 | | 6 | |
∫cos
4(x)dx=∫cos(x)cos
3(x)dx
∫cos
4(x)dx=sin(x)cos
3(x)−3∫sin(x)cos
2(x)(−sin(x))dx
∫cos
4(x)dx=sin(x)cos
3(x)+3∫cos
2(x)sin
2(x)dx
∫cos
4(x)dx=sin(x)cos
3(x)+3∫cos
2(x)(1−cos
2(x))dx
∫cos
4(x)dx=sin(x)cos
3(x)+3∫cos
2(x)dx−3∫cos
4(x)dx
4∫cos
4(x)dx=sin(x)cos
3(x)+3∫cos
2(x)dx
| 1 | | 3 | |
∫cos4(x)dx= |
| sin(x)cos3(x)+ |
| ∫cos2(x)dx |
| 4 | | 4 | |
∫cos
2(x)dx=∫cos(x)cos(x)dx
∫cos
2(x)dx=sin(x)cos(x)−∫sin(x)(−sin(x))dx
∫cos
2(x)dx=sin(x)cos(x)+∫sin
2(x)dx
∫cos
2(x)dx=sin(x)cos(x)+∫(1−cos
2(x))dx
∫cos
2(x)dx=sin(x)cos(x)+∫dx−∫cos
2(x)dx
2∫cos
2(x)dx=sin(x)cos(x)+∫dx
| 1 | |
∫cos2(x)dx= |
| (sin(x)cos(x)+x)+C |
| 2 | |
| 1 | | 3 | | 3 | |
∫cos4(x)dx= |
| sin(x)cos3(x)+ |
| sin(x)cos(x)+ |
| x+C |
| 4 | | 8 | | 8 | |
| 1 | |
∫cos4(x)dx−∫cos6(x)dx=− |
| sin(x)cos5(x)+ |
| 6 | |
| 1 | | 1 | | 1 | |
|
| sin(x)cos3(x)+ |
| sin(x)cos(x)+ |
| x+C |
| 24 | | 16 | | 16 | |
26 cze 15:35