1 | ||
yn=−2yn−1+ | (n−1)2 4n | |
4 |
1 | ||
sn=− | sn−1 | |
2 |
1 | 1 | (−1)n | ||||
ynsn=(−2yn−1)(− | sn−1)+ | (n−1)2 4n | ||||
2 | 4 | 2n |
1 | ||
ynsn=yn−1sn−1+ | (n−1)2 (−2)n | |
4 |
1 | ||
Un=Un−1+ | (n−1)2 (−2)n | |
4 |
1 | ||
Un=U0+∑k=1n | (k−1)2 (−2)k | |
4 |
1 | ||
Un=1+∑k=1n | (k−1)2 (−2)k | |
4 |
1 | 1 | |||
yn(− | )n=1+∑k=1n | (k−1)2 (−2)k | ||
2 | 4 |
1 | ||
yn=(−2)n(1+∑k=1n | (k−1)2 (−2)k) | |
4 |
1 | ||
Sumę ∑k=1n | (k−1)2 (−2)k | |
4 |