2 + sinx | ||
∫ | dx | |
1 + sin2x |
1 | sinx | |||
np: = 2∫ | dx + ∫ | dx = .. | ||
1 + sin2x | 1 + sin2x |
dt | dt | |||
... = −∫ | = − ∫ | |||
1 + 1 − cos2t | 2 − t2 |
ln x | ||
∫ | dx | |
x(4 + ln2x) |
1 | ||
podstawiam: ln x=t, | dx = dt | |
x |
t | 1 | 1 | ||||
wychodzi: ∫ | dt = ∫ t | dt = tarctgt= | ln xarctgln x | |||
(4 + t2) | (22 + t2) | 4 |
1 | ||
podstawienie: lnx = t, | dx = dt | |
x |
1 | lnx | t | 1 | 2t | ||||||
∫( | * | ) dx = ∫ | dt = | ∫ | dt = | |||||
x | 4 + ln2x | 4 + t2 | 2 | 4 + t2 |
1 | ||
= | ln(4 + t2) + C | |
2 |