f(x)= √log1/2x − log1/2(x−1) + 1
log1/2x − log1/2(x−1) + 1>0
x>0 /\ x> 1 x∊(1, +∞)
log1/2x − log1/2(x−1)>log1/22
| x | |
− 2>0 | |
| x−1 |
1) x > 0
2) x−1 > 0 ⇒ x > 1
3) log1/2x − log1/2(x−1) + 1 ≥ 0
| x | 1 | |||
log1\2 | + log1\2 | ≥ 0 | ||
| x−1 | 2 |
| x | ||
log1\2 | ≥ 0 | |
| 2(x−1) |
| x | ||
log1\2 | ≥ log1\21 | |
| 2(x−1) |
| x | ||
≤ 1 | ||
| 2(x−1) |
| x | ||
− 1 ≤ 0 | ||
| 2(x−1) |
| x − 2(x−1) | ||
≤ 0 | ||
| 2(x−1) |
| x − 2x + 2 | ||
≤ 0 | ||
| 2(x−1) |