| 1 | ||
oblicz całkę nieoznaczoną z ∫ | dx | |
| √1−x2+√x2+1 |
| √x2 +1 − √x2 − 1 | ||
= ∫ | dx = ... | |
| x2 |
| √x2+1 | ch2 t | |||
∫ | dx = ∫ | dt = ∫ [1 − (1 − cth2 t)] dt = t − cth t | ||
| x2 | sh2 t |
| √1−x2−√x2+1 | ||
∫ | dx | |
| (1−x2)−(x2+1) |
| √1−x2 | √x2+1 | |||
−∫ | dx+∫ | dx | ||
| 2x2 | x2 |
| √1−x2 | ||
−∫ | dx | |
| 2x2 |
| 1−t2 | −1−t2+2 | 2 | ||||
x= | = | =−1+ | ||||
| 1+t2 | 1+t2 | 1+t2 |
| 2t | ||
(x+1)t= | ||
| 1+t2 |
| 4t | ||
dx=− | dt | |
| (1+t2)2 |
| 4t | (1+t2)2 | t | ||
∫ | dt | |||
| (1+t2) | (1−t2)2 | (1+t2)2 |
| 4t2 | ||
∫ | dt | |
| (1+t2)(1−t2)2 |
| 2((1+t2)−(1−t2)) | ||
∫ | dt | |
| (1+t2)(1−t2)2 |
| 2 | 2 | |||
∫ | −∫ | dt | ||
| (1−t2)2 | (1+t2)(1−t2) |
| 2 | (1+t2)+(1−t2) | |||
∫ | −∫ | dt | ||
| (1−t2)2 | (1+t2)(1−t2) |
| 2 | dt | dt | ||||
∫ | dt−∫ | −∫ | ||||
| (1−t2)2 | 1−t2 | 1+t2 |
| 1+t2 | ||
∫ | dt−arctan(t) | |
| (1−t2)2 |
| (1−t)2+2t) | ||
∫ | dt−arctan(t) | |
| (1−t2)2 |
| dt | 2t | |||
∫ | +∫ | dt−arctan(t) | ||
| (1+t)2 | (1−t2)2 |
| 1 | 1 | |||
=− | + | −arctan(t) | ||
| 1+t | 1−t2 |
| 1 | √1−x2 | √1−x2 | |||
= | −arctan( | )+C | |||
| 2 | x | x+1 |
| √x2+1 | ||
∫ | dx | |
| x2 |
| t2−1 | ||
x= | ||
| 2t |
| 2t2−t2+1 | t2+1 | |||
t−x= | = | |||
| 2t | 2t |
| 2t*2t−2(t2−1) | ||
dx= | dt | |
| 4t2 |
| t2+1 | ||
dx= | dt | |
| 2t2 |
| 4t2 | (t2+1) | (t2+1) | ||
∫ | dt | |||
| (t2−1)2 | 2t | 2t2 |
| (t2+1)2 | ||
∫ | dt | |
| t(t2−1)2 |
| (t2−1)2+4t2 | ||
∫ | dt | |
| t(t2−1)2 |
| dt | 4t | |||
∫ | +∫ | dt | ||
| t | (t2−1)2 |
| 2 | ||
=ln|t|− | +C | |
| t2−1 |
| √x2+1 | ||
=− | +ln|x+√x2+1|+C | |
| x |
| √1−x2 | √x2+1 | |||
−∫ | dx+∫ | dx | ||
| 2x2 | x2 |
| 1 | √1−x2 | √x2+1 | √1−x2 | |||
− | −arctan( | )+ln|x+√x2+1|+C | ||||
| 2 | x | x | x+1 |