funkcja kwadratowa f w postaci kanonicznej
Zagrożony: 2.23 Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej, wiedząc, że dla argumentu 2
funkcja przyjmuje wartość najmniejszą, równą −3, a do jej wykresu należy punkt A(4,−1).)
2.24 Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej, wiedząc, że dla argumentu −5
funkcja przyjmuje wartość największą, równą −8, a do jej wykresu należy punkt A(−3, −9).
2.25 Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej, wiedząc, żezbiór wartości
funkcji jest przedziałem (−nieskończonośc; 18>, a wartość 10 funkcja przyjmuje dla dwóch
argumentów: 3 i −1.
16 cze 08:45
irena_1:
23.
p=2
q=−3
f(x)=a(x−2)
2−3
(4; −1)
−1=a(4−2)
2−3
4a−3=−1
4a=2
16 cze 17:32
irena_1:
24.
Podobnie:
p=−5
q=−8
f(x)=a(x+5)2−8
i wstawić współrzędne punktu (−3; −9), żeby obliczyc a.
16 cze 17:33
irena_1:
25.
q=18
f(3)=f(−1)
f(x)=a(x−1)
2+18
i wstawić współrzędne punktu (3; 10)
16 cze 17:34