| ex2−1 | ||
1) lim | ||
| cosx−1 |
| sinx | ||
2) lim | ||
| x2 |
| ex2−1 | 0 | 2x*ex2 | 0 | |||||
Ad 1) lim | = [ | ] = lim | = [ | ] = | ||||
| cosx−1 | 0 | sinx | 0 |
| 2ex2 + 2x2ex2 | ||
= lim | =2 ,dwukrotnie zastosowałem regułe de L'Hospitala | |
| cosx |
| sinx | cosx | |||
Ad 2) lim | = lim | =+∞ ,równiesz na podstawie reguły de L'Hospitala | ||
| x2 | 2x |
| sinx | 1 | |||
Ad 2) = limx→0 | * | = [1*∞] = +∞ | ||
| x | x |
| 1 | ||
f( x) = ( | )sin x | |
| x2 |
| 2sin2x | sinx | |||
lim[sinx*ln(1/x2)] = [H] = | = lim 2* | *tgx = [2*1*0] = 0 | ||
| x*cosx | x |
| 1 | 1 | |||
y=( | )sinx <=> y = exp[sinx*ln( | )] | ||
| x2 | x2 |
| 1 | ||
czyli g(x)=sinx* ln( | ) dla x→0+ g(x) =[ 0*∞] | |
| x2 |
| ∞ | ||||||||||||
czyli g(x) = | jest to symbol nieoznaczony typu [ | ] | |||||||||||
| ∞ |
| 2sin2x | sinx | |||
lim g(x) = lim | = 0 ; bo lim | =1 dla x→0+ | ||
| xcosx | x |