| (−1)n | ||
an= | ||
| 2n−1 |
| −1 | (−1)n | 1 | ||||
oraz | ≤ | ≤ | ||||
| 2n−1 | 2n−1 | 2n−1 |
| −1 | ||
Obliczam granicę limn→+∞ | ||
| 2n−1 |
| −1 |
| 0 | |||||||||||||
limn→+∞ | = limn→+∞ | = | =0 | ||||||||||||
| 2n−1 |
| 2−0 |
| 1 | ||
Obliczam granicę limn→+∞ | ||
| 2n−1 |
| 1 |
| 0 | |||||||||||||
limn→+∞ | = limn→+∞ | = | =0 | ||||||||||||
| 2n−1 |
| 2−0 |
| −1 | 1 | |||
Ponieważ limn→+∞ | = 0 oraz limn→+∞ | = 0 | ||
| 2n−1 | 2n−1 |
| −1 | (−1)n | 1 | ||||
a także: | ≤ | ≤ | ||||
| 2n−1 | 2n−1 | 2n−1 |
| (−1)n | ||
limn→+∞ | = 0 | |
| 2n−1 |