całka
Leszek: obliczyć całkę
π/2
∫cos3(x)dx
0
8 cze 16:15
ICSP: Np poprzez podstawienie t = sinx [cos3x = cosx* (1 − sin2x)]
8 cze 16:16
Jerzy:
∫cos3xdx = ∫cos2x*cosxdx = ∫(1 − sin2x)*cosxdx ... i podstaw: sinx = t
8 cze 16:17
Jerzy:
Witaj
8 cze 16:17
ICSP: Hej
8 cze 16:20
jc:
| 1 | | 3 | | 1 | | 3 | |
cos3 x = |
| cos 3x + |
| cos x, ∫ = |
| sin 3x + |
| sin x |
| 4 | | 4 | | 12 | | 4 | |
8 cze 16:24
Leszek: OK
∫cos3(x)dx=∫(1−t2)dt = t−t2/3 = sin(x) − sin3(x)/3
zatem
π/2 π/2
∫cos3(x)dx = [sin(x) − sin3(x)/3] = 2/3
0 0
8 cze 16:26
Jerzy:
8 cze 16:29
Mariusz:
∫cos
n(x)dx=
∫cos(x)cos
n−1(x)dx=sin(x)cos
n−1(x)+(n−1)∫sin
2(x)cos
n−2(x)dx
∫cos(x)cos
n−1(x)dx=sin(x)cos
n−1(x)+(n−1)∫(1−cos
2(x))cos
n−2(x)dx
∫cos(x)cos
n−1(x)dx=sin(x)cos
n−1(x)+(n−1)∫cos
n−2dx−(n−1)∫cos
n(x)dx
n∫cos
n(x)dx=sin(x)cos
n−1(x)+(n−1)∫cos
n−2dx
| 1 | | n−1 | |
∫cosn(x)dx= |
| sin(x)cosn−1(x)+ |
| ∫cosn−2dx |
| n | | n | |
| 1 | | 2 | |
I3= |
| sin(x)cos2(x)|0π/2+ |
| ∫0π/2cos(x)dx |
| 3 | | 3 | |
| 1 | | 2 | | 2 | |
I3= |
| (1*0−0*1)+ |
| (1−0)= |
| |
| 3 | | 3 | | 3 | |
9 cze 14:10