| 4 | ||
Wiedząc że α i β są miarami kątów ostrych trójkąta prostokątnego oraz sin α + cos α= | , | |
| 3 |
| cosβ | ||
oblicz wartość wyrażenia tg−1a + | ||
| cosα |
| 4 | ||
sin α + cos α = | ; podnosimy obustronnie do kwadratu | |
| 3 |
| 16 | ||
sin2 α + 2 sin α*cos α + cos2α = | ||
| 9 |
| 16 | 7 | |||
sin 2α = | − 1 = | |||
| 9 | 9 |
| 49 | 32 | 16*2 | ||||
(cos 2α)2 = 1 − (sin 2α)2 = 1 − | = | = | ||||
| 81 | 81 | 81 |
| 4 √2 | ||
cos 2α = | ||
| 9 |
| 4 √2 | ||
1 − 2 sin2 α = | ||
| 9 |
| 4√2 | 9 − 4√2 | |||
2 sin2α = 1 − | = | |||
| 9 | 9 |
| 9 − 4√2 | ( 2√2 − 1)2 | |||
sin2α = | = | |||
| 2*9 | 2*9 |
| 2 √2 − 1 | 4 − √2 | |||
sin α = | = | |||
| 3√2 | 6 |
| 4 − √2 | 18 − 8√2 | 18 +8√2 | (4 +√2)2 | |||||
cos2α = 1− ( | )2 = 1 − | = | = | |||||
| 6 | 36 | 36 | 36 |
| 4 + √2 | ||
cos α = | ||
| 6 |
| 4 − √2 | ||
cos β = sin α = | ||
| 6 |
| sin α | 4 −√2 | 6 | 4 − √2 | |||||
tg α = | = | * | = | |||||
| cos α | 6 | 4 + √2 | 4 + √2 |
| 1 | 4 + √2 | ||
= | |||
| tg α | 4 − √2 |
| 1 | cos β | 4 + √2 | 4 − √2 | 6 | |||||
+ | = | + | * | = | |||||
| tg α | cos α | 4 − √2 | 6 | 4 + √2 |
| 4 + √2 | 4 − √2 | ( 4 +√2)2 +(4 −√2)2 | ||||
= | + | = | = | |||
| 4 − √2 | 4 + √2 | 16 − 2 |
| 36 | 18 | |||
= | = | |||
| 14 | 7 |
| 4 | ||
sinα + cosα = | ||
| 3 |
| 4 | ||
{sinα + cosα = | ||
| 3 |
| 4 | ||
z drugiego rownania −>> sinα = | − cosα | |
| 3 |
| 4 | ||
( | − cosα)2 + cos2α = 1 | |
| 3 |