4 | ||
Wiedząc że α i β są miarami kątów ostrych trójkąta prostokątnego oraz sin α + cos α= | , | |
3 |
cosβ | ||
oblicz wartość wyrażenia tg−1a + | ||
cosα |
4 | ||
sin α + cos α = | ; podnosimy obustronnie do kwadratu | |
3 |
16 | ||
sin2 α + 2 sin α*cos α + cos2α = | ||
9 |
16 | 7 | |||
sin 2α = | − 1 = | |||
9 | 9 |
49 | 32 | 16*2 | ||||
(cos 2α)2 = 1 − (sin 2α)2 = 1 − | = | = | ||||
81 | 81 | 81 |
4 √2 | ||
cos 2α = | ||
9 |
4 √2 | ||
1 − 2 sin2 α = | ||
9 |
4√2 | 9 − 4√2 | |||
2 sin2α = 1 − | = | |||
9 | 9 |
9 − 4√2 | ( 2√2 − 1)2 | |||
sin2α = | = | |||
2*9 | 2*9 |
2 √2 − 1 | 4 − √2 | |||
sin α = | = | |||
3√2 | 6 |
4 − √2 | 18 − 8√2 | 18 +8√2 | (4 +√2)2 | |||||
cos2α = 1− ( | )2 = 1 − | = | = | |||||
6 | 36 | 36 | 36 |
4 + √2 | ||
cos α = | ||
6 |
4 − √2 | ||
cos β = sin α = | ||
6 |
sin α | 4 −√2 | 6 | 4 − √2 | |||||
tg α = | = | * | = | |||||
cos α | 6 | 4 + √2 | 4 + √2 |
1 | 4 + √2 | ||
= | |||
tg α | 4 − √2 |
1 | cos β | 4 + √2 | 4 − √2 | 6 | |||||
+ | = | + | * | = | |||||
tg α | cos α | 4 − √2 | 6 | 4 + √2 |
4 + √2 | 4 − √2 | ( 4 +√2)2 +(4 −√2)2 | ||||
= | + | = | = | |||
4 − √2 | 4 + √2 | 16 − 2 |
36 | 18 | |||
= | = | |||
14 | 7 |
4 | ||
sinα + cosα = | ||
3 |
4 | ||
{sinα + cosα = | ||
3 |
4 | ||
z drugiego rownania −>> sinα = | − cosα | |
3 |
4 | ||
( | − cosα)2 + cos2α = 1 | |
3 |