| √x−1 + √x+5 | ||
lim(x→∞) [2x(√x−1 − √x+5)] * | ||
| √x−1 + √x+5 |
| −12x | |||||||||||||||||||||||||||||
lim(x→∞)[ | ] | ||||||||||||||||||||||||||||
|
| −12x | ||
lim(x→∞) [ | ] | |
| √x + √x |
| −12x | ||
lim(x→∞)[ | ] = lim(x→∞)[−6 * x1/2] = −∞ (a w odp jest ∞) | |
| 2x1/2 |
x ≥ 1
| 2 x*(x −1 − (x +5) | ||
f(x) =2x*(√x −1 − √x+5) = | = | |
| √x −1+ √x+5 |
| −12 x | − 12 | |||
= | = | |||
| √x −1 +√x+5 | √1x − 1x2 + √1x + 5x2 |
| − 12 | ||
lim f(x) = | = − ∞ | |
| 0+ |