| cos(x) | ||
∫2x√x | dx=2x√xsin(√x)−∫3√xsin(√x)dx | |
| 2√x |
| cos(x) | (−sin(√x)) | |||
∫2x√x | dx=2x√xsin(√x)+∫6x | dx | ||
| 2√x | 2√x |
| cos(x) | ||
∫2x√x | dx=2x√xsin(√x)+6xcos(√x)−∫6cos(√x)dx | |
| 2√x |
| cos(x) | cos(√x) | |||
∫2x√x | dx=2x√xsin(√x)+6xcos(√x)−∫12√x | dx | ||
| 2√x | 2√x |
| cos(x) | sin(√x) | |||
∫2x√x | dx=2x√xsin(√x)+6xcos(√x)−12√xsin(√x)+12∫ | dx | ||
| 2√x | 2√x |
| cos(x) | ||
∫2x√x | dx=2x√xsin(√x)+6xcos(√x)−12√xsin(√x)−12cos(√x)+C | |
| 2√x |