dx | ||
druga podstawienie t=ln(x), dt= | i mamy: | |
x |
1 | ||
1. ∫sin(log(x))dx = − | x (cos(log(x))−sin(log(x)))+C | |
2 |
1 | ||
2.∫e−2 x sin(4 x)dx = − | e−2 x (sin(4 x)+2 cos(4 x))+C | |
10 |
1 | 1 | |||
∫e−2xsin(4x)dx=− | e−2xcos(4x)− | ∫e−2xcos(4x)dx | ||
4 | 2 |
1 | 1 | 1 | ||||
∫e−2xsin(4x)dx=− | e−2xcos(4x)− | ( | e−2xsin(4x)+U{1}{ | |||
4 | 2 | 4 |
1 | 1 | 1 | ||||
∫e−2xsin(4x)dx=− | e−2xcos(4x)− | e−2xsin(4x)− | ∫e−2xsin(4x)dx | |||
4 | 8 | 4 |
5 | 1 | ||
∫e−2xsin(4x)dx=− | e−2x(2cos(4x)+sin(4x)) | ||
4 | 8 |
1 | ||
∫e−2xsin(4x)dx=− | e−2x(2cos(4x)+sin(4x))+C | |
10 |
1 | ||
∫sin(ln(x))dx=xsin(ln(x))−∫xcos(ln(x)) | dx | |
x |
1 | ||
∫sin(ln(x))dx=xsin(ln(x))−(xcos(ln(x))+∫xsin(ln(x)) | dx) | |
x |
1 | ||
∫sin(ln(x))dx= | x(sin(ln(x))−cos(ln(x)))+C | |
2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |