| 5 | ||
uzasadnij, ze nie istnieje kat ostry α taki, ze: sin α + cos α = | ||
| 3 |
| 5 | ||
sinα + cosα = | ||
| 3 |
| π | 5 | |||
sinα + sin( | − α) = | |||
| 2 | 3 |
| π | π | 5 | ||||
2*sin( | )*cos(α − | ) = | ||||
| 4 | 4 | 3 |
| π | 5 | |||
√2*cos(α − | ) = | |||
| 4 | 3 |
| π | 5√2 | |||
cos(α − | ) = | |||
| 4 | 6 |
| π | π | |||
jeśli kąt α ma być 0 < α < | , to kąt (α − | ) powinien być | ||
| 2 | 4 |
| −π | π | π | |||
< α − | < | ||||
| 4 | 4 | 4 |
| π | π | |||
0 < α − | < | |||
| 4 | 4 |
| 5√2 | π | π | √2 | ||||
= cos(α − | ) < cos( | ) = | |||||
| 6 | 4 | 4 | 2 |
| √2 | ||
skracamy przez | i dostajemy | |
| 2 |
| 5 | |
< 1 | |
| 3 |