| 3+x | ||
a) | | −1|<10−4 | |
| x−2 |
| −2x2+1 | ||
b) | | +2|<0,000001 | |
| x2+1 |
| x2+x | ||
c) | | −1|<0,001 | |
| x2−1 |
| x+3 | 1(x−2)+5 | 5 | ||||
a) | = | = 1+ | ||||
| x−2 | x−2 | x−2 |
| 5 | ||
|1+ | −1|<10−4 | |
| x−2 |
| 5 | ||
| | |<10−4 dla x−2>0 | |
| x−2 |
| 5 | |
<10−4 | |
| x−2 |
| −2x2+1 | −2(x2+1)+3 | 3 | ||||
teraz b) | = | = −2+ | ||||
| x2+1 | x2+1 | x2+1 |
| 3 | ||
|−2+ | +2|<0,000001 | |
| x2+1 |
| 3 | ||
| | |<0,000001 x2+1 >0 zawsze | |
| x2+1 |
| 3 | |
<10−6 | |
| x2+1 |
| 3 | ||
x2>−1+ | ||
| 10−6 |
| x2+x | ||
c) | = U{1(x2−1) i zonk | |
| x2−1 |
| x(x+1) | x | ||
= | (tez nic nie da | ||
| (x+1)(x−1) | x−1 |
| −2x2 + 1 | 3 | 3 | 4 | ||||
+ 2 = | < | < | |||||
| x2+1 | x2+1 | x2 | x2 |
| 4 | ||
WYstarczy aby | ≤ 10−6, czyli aby x2 ≥ 4*106, tj. x ≥ 2000. | |
| x2 |
| x | ||
| | −1|<0,001 | |
| x−1 |
| x−(x−1) | ||
| | |<0,001 | |
| x−1 |
| 1 | ||
| | |<0,001 dla x−1>0 mamy | |
| x−1 |
| 1 | |
<10−3 | |
| x−1 |
| 1 | 1 | ||
< | |||
| x−1 | 103 |
| x2+x | x+1 | 1 | |||
− 1 = | = | ||||
| x2−1 | x2−1 | x−1 |