| 2n2−5n+2 | ||
lim | = 0 | |
| 8n2−3n+2 |
| 3n2+4n−1 | ||
lim | =0 | |
| 5n2−2n+3 |
| 2n2+4n−1 | 2 | |||
lim | = | |||
| 5n2−2n+3 | 5 |
| 2 | 3 | 2 | ||||
yyy... a nie powinno być kolejno: | , | , | ? | |||
| 8 | 5 | 5 |
| px2 + 4x + 5 | p | |||
lim | = | |||
| qx2 + 2x +1 | q |
| 2 | ||
Pierwsze | ||
| 8 |
| 3 | ||
Drugie | ||
| 5 |
| 2n2−5n+2 | ||||
Lim | //wyciągasz najwyższą potęgę mianownika, czyli | |||
| n→∞ | 8n2−3n+2 |
| 5 | ||||||||||||||||||||
Lim | i | dąży do 0 podobnie | |||||||||||||||||||
| n→∞ |
| n |
| 2 | ||
z resztą n'ów w mianownikach, a n2 się skracają i uzyskujesz | ![]() | |
| 8 |
| xcosx+sinx | ||
lim | to trzeba hospitalem i potem 1/3 wychodzi? | |
| 3x |
| 3X−xcosx+3+sinx | ||
wyszlo mi | ||
| 9x |
| x cosx + sinx | 1 | x cosx + sinx | 1 | sinx | |||||
= | * | = | (cosx + | ) | |||||
| 3x | 3 | x | 3 | x |
| 1 | sinx | 1 | sinx | |||||
lim ( | cosx + | ) = | lim (cosx + | ) = | ||||
| 3 | x | 3 | x |
| sinx | sinx | |||
lim (cosx+ | ) = lim cosx + lim | = | ||
| x | x |
| sinx | ||
= 1 + lim | ||
| x |
| sinx | cosx | |||
lim | z de l'Hospitala = lim | = 1 | ||
| x | 1 |
| sinx | ||
zatem lim (cosx+ | ) = 2 | |
| x |
| x cosx + sinx | 2 | |||
lim | = | |||
| 3x | 3 |
| sinx | ||
Ale po co hospital | =1 przy x dążącym do 0 | |
| x |
| 0 | ||
a skad to wiemy skoro mamy | ? | |
| 0 |