| f'(x,y) | f'(x,y) | |||
x( | −1)+y( | −1}=f(x,y) | ||
| x' | y' |
| d | d | d2 | ||||
Co oznacza zapis f'(x, y)? Czy jest to | f(x, y), | f(x, y) czy | f(x, y) | |||
| dx | dy | dxdy |
| d | d | d | d | ||||
[z] = | [uv] = | [u]v + u | [v] = *) | ||||
| dx | dx | dx | dx |
| d | d | d | d | ||||
[u] = | [x + y] = | [x] + | [y] = 1 + 0 = 1 | ||||
| dx | dx | dx | dx |
| d | d | 1 | d | 1 | 1 | ||||||
[v] = | [ln(u)] = | * | [u] = | * 1 = | |||||||
| dx | dx | u | dx | x + y | x + y |
| 1 | ||
*) = 1*ln(x + y) + (x + y) | = ln(x + y) + 1 | |
| x + y |
| d | |
f(x, y) = ln(x + y) + 1 | |
| dx |
| d | d | d | d | ||||
[z] = | [uv] = | [u]v + u | [v] = **) | ||||
| dy | dy | dy | dy |
| d | d | d | d | ||||
[u] = | [x + y] = | [x] + | [y] = 0 + 1 = 1 | ||||
| dy | dy | dy | dy |
| d | d | 1 | d | 1 | 1 | ||||||
[v] = | [ln(u)] = | * | [u] = | * 1 = | |||||||
| dy | dy | u | dy | x + y | x + y |
| 1 | ||
**) = 1*ln(x + y) + (x + y) | = ln(x + y) + 1 | |
| x + y |
| d | |
f(x, y) = ln(x + y) + 1 | |
| dy |
| d | d | |||
x( | f(x, y) − 1) + y( | f(x, y) − 1) = f(x, y) | ||
| dx | dy |