| (2x+1)4−(2x+3)4 | ||
Granica limx→ −∞ | ||
| (x+3)3−(3x−1)3 |
| [(2x+1)2−(2x+3)2]*[(2x+1)2+(2x+3)2] | |
= | |
| [x+3−(3x−1)]*[(x+3)2+(x+3)*(3x−1)+(3x−1)2] |
| (2x+1−2x−3)(2x+1+2x+3)*[(2x+1)2+(2x+3)2] | ||
= | = | |
| (−2x+4)*[(x+3)2+(x+3)*(3x−1)+(3x−1)2] |
| (−2)*(4x+4)*(4x2+4x+1+4x2+12x+9) | ||
= | = | |
| (−2)*(x−2)*(x2+6x+9+3x2+8x−3+9x2−6x+1 |
| 4*(x+1)*(8x2+16x+10) | ||
= | ||
| (x−2)*(13x2+8x+7) |
| 4*(x+1)*(8x2+16x+10) | ||
limx→−∞ | = | |
| (x−2)*(13x2+8x+7) |
| 4*(x+1) | (8x2+16x+10) | 4*8 | ||||
limx→−∞ | *limx→−∞ | = | ||||
| x−2 | (13x2+8x+7) | 13 |
Właściwie to wyszło na to samo co by to wymnożyć.