| 1 | ||
y= | ex+e−x dla 0≤x≤1 | |
| 2 |
| 1 | ||
y'= | ex−e−x | |
| 2 |
| 1 | ||
∫(1+( | ex−e−x)2)1/2 (całka, pierwiastek kwadratowy z całości) | |
| 2 |
| 1 | 1 | |||
∫(1+ | ex−e{−x}2)1/2dx=∫( | e2x+e−2x)1/2dx | ||
| 2 | 4 |
| 1 | ||
| t= | e2x+e−2x) | | |
| 4 |
| 1 | 1 | |||
| | dt=( | e2x−e−2x)dx | | ||
| 2 | 4 |
| 1 | ||
∫(1+( | ex−e−x)2)1/2dx | |
| 2 |
| 1 | ||
∫(1+( | ex−e−x)dx | |
| 2 |
| 1 | ||
x+ | ∫exdx−∫e−xdx | |
| 2 |
| 1 | ||
x+ | ex+ex | |
| 2 |
| 3 | ||
x+ | ex | |
| 2 |
| 1 | ||
zef od kied (1 + ( | ex − e−x)2) | |
| 2 |
| 1 | ||
(1 + ( | ex − e−x))2 | |
| 2 |