| 2−4+6−8+...+(4n−2)−4n | ||
lim | ||
| 3n−1 |
| −4n4−4n3 | ||
lim | ||
| 3n−1 |
| (−1)k | (−1)k+1 | |||
∑(−1)k(2k+2)=−(2k+2) | −∑2(− | ) | ||
| 2 | 2 |
| (−1)k | ||
∑(−1)k(2k+2)=−(k+1)(−1)k+ | ||
| 2 |
| 1 | (−1)k | |||
∑(−1)k(2k+2)= | (−1)k− | (2k+2) | ||
| 2 | 2 |
| 1 | ||
∑(−1)k(2k+2)= | (−1)k(1−2k−2) | |
| 2 |
| 1 | ||
∑(−1)k(2k+2)=− | (−1)k(2k+1) | |
| 2 |
| 1 | 1 | |||
∑k=1n(−1)k(2k+2)=− | (−1)n+1(2n+3)−(− | (−1)(3)) | ||
| 2 | 2 |
| 1 | 3 | |||
∑k=1n(−1)k(2k+2)= | (2n+3)(−1)n− | |||
| 2 | 2 |
| 1 | 1 | |||
2+∑k=1n(−1)k(2k+2)= | + | (2n+3)(−1)n | ||
| 2 | 2 |
| 1 | 1 | |||
Sn= | + | (2n+3)(−1)n | ||
| 2 | 2 |
| 1 | 1 | |||
S2n−1= | + | (2*(2n−1)+3)(−1)2n−1 | ||
| 2 | 2 |
| 1 | 1 | |||
S2n−1= | − | (4n+1) | ||
| 2 | 2 |
| n4 | ||
Policz sumę ∑n=1∞ | ||
| n! |
| n4 | ||
A(x)=∑n=0∞ | xn | |
| n! |
| 27 | 1 | 1 | ||||
A(x)=x+8x2+ | x3+∑n=4 | xn+6(∑n=4 | xn) | |||
| 2 | (n−4)! | (n−3)! |
| 1 | 1 | |||
+7(∑n=4 | xn)+∑n=4 | xn | ||
| (n−2)! | (n−1)! |
| 27 | 1 | 1 | ||||
A(x)=x+8x2+ | x3+x4(∑n=4 | xn−4)+6x3(∑n=4 | xn−3) | |||
| 2 | (n−4)! | (n−3)! |
| 1 | 1 | |||
+7x2(∑n=4 | xn−2)+x(∑n=4 | xn−1) | ||
| (n−2)! | (n−1)! |
| 27 | 1 | 1 | ||||
A(x)=x+8x2+ | x3+x4(∑n=0 | xn)+6x3(∑n=1 | xn) | |||
| 2 | (n)! | (n)! |
| 1 | 1 | |||
+7x2(∑n=2 | xn)+x(∑n=3 | xn) | ||
| (n)! | (n)! |
| 27 | 1 | 1 | ||||
A(x)=x+8x2+ | x3+x4(∑n=0 | xn)+6x3(∑n=0 | xn−1) | |||
| 2 | (n)! | (n)! |
| 1 | 1 | x2 | ||||
+7x2(∑n=0 | xn−1−x)+x(∑n=0 | xn−1−x− | ) | |||
| (n)! | (n)! | 2 |
| 27 | x2 | |||
A(x)=x+8x2+ | x3+x4ex+6x3(ex−1)+7x2(ex−1−x)+x(ex−1−x− | ) | ||
| 2 | 2 |
| 27 | x3 | |||
A(x)=(x+7x2+6x3+x4)ex+x+8x2+ | x3−6x3−7x2−7x3−x−x2− | |||
| 2 | 2 |