sin3(x) | ||
∫ | dx=sin3(x)tan(x)−3∫sin2(x)tan(x)cos(x)dx | |
cos2(x) |
sin3(x) | sin4(x) | |||
∫ | dx= | −3∫sin3(x)dx | ||
cos2(x) | cos(x) |
1 | ||
∫sin3(x)dx=− | (cos(x)sin2(x)+2cos(x))+C | |
3 |
sin3(x) | sin4(x) | |||
∫ | dx= | +cos(x)sin2(x)+2cos(x)+C | ||
cos2(x) | cos(x) |
t2−1 | ||
t = cos x dt = −sin x dx ∫ | dt | |
t2 |
sin3(x) | sin(x) | |||
∫ | dx=∫sin2(x) | dx | ||
cos2(x) | cos2(x) |
sin3(x) | sin2(x) | sin(x)cos(x) | ||||
∫ | dx= | −2∫ | dx | |||
cos2(x) | cos(x) | cos(x) |
sin3(x) | sin2(x) | |||
∫ | dx= | −2∫sin(x)dx | ||
cos2(x) | cos(x) |
sin3(x) | sin2(x) | |||
∫ | dx= | +2cos(x)+C | ||
cos2(x) | cos(x) |