dx | ||
j) ∫21 | ||
x√4−x2 |
1 | ||
∫ | dx | |
x√4−x2 |
−4t | ||
x= | ||
1+t2 |
−4t2+2+2t2 | −2t2+2 | |||
xt+2= | = | |||
1+t2 | 1+t2 |
−4(1+t2)−2t(−4t) | ||
dx= | dt | |
(1+t2)2 |
−4+4t2 | ||
dx= | dt | |
(1+t2)2 |
1+t2 | 1+t2 | 4(t2−1) | ||
∫ | dt | |||
−4t | −2(t2−1) | (1+t2) |
dt | ||
=2∫ | ||
t |
√4−x2−2 | ||
=2ln| | |+C | |
x |
1 | √4−x2−2 | |||
= | ln| | |+C | ||
2 | x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |