W trójkącie równoramiennym ABC o podstawie AB, gdzie |AB| = a oraz |AC| = |BC| = b,
| √2a2+b2 | ||
poprowadzono środkową AD długości x. Wykaż, że x= | . | |
| 2 |
| a | |||||||||
cos(2α)= | = | |||||||||
| b | 2b |
| 1 | 1 | b2 | a | |||||
x2=a2+( | b)2−2*a* | b*cos(2α)=a2+ | −ab* | = | ||||
| 2 | 2 | 4 | 2b |
| b2 | a2 | a2 | b2 | 1 | ||||||
a2+ | − | = | + | = | *(2a2+b2) | |||||
| 4 | 2 | 2 | 4 | 4 |
| 1 | ||
x= | √2a2+b2 | |
| 2 |
cos(180−α)= −cosα
dwa razy z tw. kosinusów w trójkątach
ABD i ADC
| b2 | b | |||
a2=s2+ | −2*s | *cosα | ||
| 4 | 2 |
| b2 | b | |||
i b2=s2+ | +2*s* | *cosα | ||
| 4 | 2 |
| b2 | √2a2+b2 | |||
a2+b2=2s2+ | /*2 ⇒ 4s2= 2a2+b2 ⇒ s= | |||
| 2 | 2 |
| 1 | ||
Z podobieństwa trójkątów BPD i BHC w skali 1:2 (cecha kąt−kąt−kąt) |PD|= | h oraz | |
| 2 |
| 1 | 1 | 1 | 1 | 3 | ||||||
|BP|= | |BH|= | * | a= | a⇒|AP|= | a | |||||
| 2 | 2 | 2 | 4 | 4 |
| 1 | ||
h2+( | a)2=b2 | |
| 2 |
| 1 | ||
h2=b2− | a2 | |
| 4 |
| 3 | 1 | |||
( | a)2+( | h)2=x2 | ||
| 4 | 2 |
| 9 | 1 | ||
a2+ | h2=x2 | ||
| 16 | 4 |
| 9 | 1 | 1 | |||
a2+ | (b2− | a2)=x2 | |||
| 16 | 4 | 4 |
| 9 | 1 | 1 | |||
a2+ | b2− | a2=x2 | |||
| 16 | 4 | 16 |
| 8 | 1 | ||
a2+ | b2=x2 | ||
| 16 | 4 |
| 1 | 1 | ||
a2+ | b2=x2 | ||
| 2 | 4 |
| 1 | |
(2a2+b2)=x2 | |
| 4 |
| 1 | ||
x= | √2a2+b2 | |
| 2 |