| |AB| | 2 | |||
w trójkącie prostokątnym ABC o przyprostokątnych AB i AC mamy | = | . Wysokość | ||
| |BC | 5 |
| |BD| | ||
AD dzieli przeciwprostokątną BC na odcinki BD oraz DC. Oblicz | . | |
| |DC| |
| c | 2 | ||
= | |||
| a | 5 |
| 2 | ||
c= | a | |
| 5 |
| 2 | ||
b2+( | a)2=a2 | |
| 5 |
| 4 | 21 | |||
b2=a2− | a2= | a2 | ||
| 25 | 25 |
| √21 | ||
b= | a | |
| 5 |
| √21 | 2 | ||
a* | a=ah | ||
| 5 | 5 |
| 2√21 | ||
h= | a | |
| 25 |
| 4*21 | 4 | |||
x2+ | a2= | a2 | ||
| 625 | 25 |
| 100−84 | 16 | |||
x2= | a2= | a2 | ||
| 625 | 625 |
| 4 | ||
x= | a | |
| 25 |
| 4 | 21 | |||
y=a−x=a− | a= | a | ||
| 25 | 25 |
| x | 4 | ||
= | |||
| y | 21 |
| 2x*√21x | 2√21 | 4*21 | ||||
x>0 h= | = | x h2= | x2 | |||
| 5x | 5 | 25 |
| 212 | ||
|DC|2= 21x2−h2 ⇒ |DC|2= | x2 | |
| 25 |
| |BD| | h2 | |BD| | 4*21 | 25 | 4 | ||||||
= | ⇒ | = | * | = | |||||||
| |DC| | |DC|2 | |DC| | 25 | 212 | 21 |
| ab | ||
hc= | hc2= |BD|*|DC| | |
| c |