|AB| | 2 | |||
w trójkącie prostokątnym ABC o przyprostokątnych AB i AC mamy | = | . Wysokość | ||
|BC | 5 |
|BD| | ||
AD dzieli przeciwprostokątną BC na odcinki BD oraz DC. Oblicz | . | |
|DC| |
c | 2 | ||
= | |||
a | 5 |
2 | ||
c= | a | |
5 |
2 | ||
b2+( | a)2=a2 | |
5 |
4 | 21 | |||
b2=a2− | a2= | a2 | ||
25 | 25 |
√21 | ||
b= | a | |
5 |
√21 | 2 | ||
a* | a=ah | ||
5 | 5 |
2√21 | ||
h= | a | |
25 |
4*21 | 4 | |||
x2+ | a2= | a2 | ||
625 | 25 |
100−84 | 16 | |||
x2= | a2= | a2 | ||
625 | 625 |
4 | ||
x= | a | |
25 |
4 | 21 | |||
y=a−x=a− | a= | a | ||
25 | 25 |
x | 4 | ||
= | |||
y | 21 |
2x*√21x | 2√21 | 4*21 | ||||
x>0 h= | = | x h2= | x2 | |||
5x | 5 | 25 |
212 | ||
|DC|2= 21x2−h2 ⇒ |DC|2= | x2 | |
25 |
|BD| | h2 | |BD| | 4*21 | 25 | 4 | ||||||
= | ⇒ | = | * | = | |||||||
|DC| | |DC|2 | |DC| | 25 | 212 | 21 |
ab | ||
hc= | hc2= |BD|*|DC| | |
c |